Math 220A: Lecture 0


0S 23Course descriptionIn person
1S 26Numbers: complexIn person
2S 28Numbers: hypercomplexIn person
3S 30CodaOnline
4O 03Formal power series: algebra structureIn person
5O 05Formal power series: group structureIn person
6O 07CodaOnline
7O 10Convergent power series: algebra structureIn person
8O 12Convergent power series: group structureIn person
9O 14CodaOnline
10O 17Analytic functions: local inverse function theoremIn person
11O 19Analytic functions: local maximum modulus principleIn person
12O 21CodaOnline
13O 24Convergent power series: partial sumsIn person
14O 26Convergent power series: Jentzsch’s theoremIn person
15O 28CodaOnline
16O 31Exponential function: partial sumsIn person
17N 02Exponential function: Szego’s theoremIn person
18N 04CodaOnline
19N 07Analytic continuation: logarithmIn person
20N 09Analytic continuation: Hadamard gap theoremIn person
N 11Veteran’s Day
21N 14
22N 16
23N 18
24N 21
25N 23
N 25Thanksgiving
26N 28
27N 30
28D 02
Schedule subject to change.



  • Buckholtz, A characterization of the exponential function. American Mathematical Monthly 73 (1966), 121-123.
  • Gronwall, On the power series for \log(1+z). Annals of Mathematics 18 (1916), p. 70-73.
  • Palais, The classification of real division algebras, American Mathematical Monthly 75 (1968), 366-368.


  • Problem sets: 70%
  • Final exam: 30%


  • Lecturer: Jonathan Novak, APM 7157. Office hours MW after lecture.
  • Teaching Assistant: Shubham Sinha.


  • Piazza. Public posts preferred, private messages when necessary.
  • No email.

Leave a Reply